публикации лицея

Молочный белок убивает (часть 2)

Существуют две точки зрения, объясняющие способность ВСАА вызывать инсулинорезистентность. Первая заключается в том, что аминокислоты и инсулин аддитивно активируют фермент мTOR (англ. mammalian target of rapamycin) или мишень рапамицина. мTOR относится к группе серин-треониновых киназ, которая стимулирует трансляцию мРНК и синтез белков с помощью фосфорилирования S6 киназы-1(S6K1). Но S6K1 также негативно регулирует ИРС-1, как на уровне транскрипции, так и через прямое фосфорилирование (негативная обратная связь). В ответ на инфузию аминокислот в организме человека или животных, сопровождающуюся хронической активацией сигнального пути мТOR/S6K1 и последующим ингибирующим фосфорилированием серина ИРС‐1, происходит торможение фосфорилирования тирозина ИРС‐1, его деградация, что ведет к резистентности и лежит в основе нарушения действия инсулина.

Авторы второй точки зрения указывают на то, что развитие резистентности к инсулину связано не с ВСАА как таковыми, а скорее с побочными продуктами катаболизма аминокислот, такими как С3 и С5 ацилкарнитины. Прямая связь ВСАА и С3, С5 ацилкарнитинов демонстрируется ростом плазменных и тканевых уровней этих метаболитов в ответ на пероральный прием аминокислот ВСАА. Причем важен тот факт, что помимо пищевых источников ВСАА, генетические вариации в экспрессии генов, кодирующих ключевые ферменты катаболизма ВСАА или белков в жировой ткани, могут быть еще одним фактором, влияющим на повышение аминокислот. В итоге, увеличение циркулирующих аминокислот в рационе питания (либо из-за генетических различий в метаболизме BCAA) приводит к увеличению пула BCAA. Этот аминокислотный пул вступает в катаболические пути в скелетных мышцах и печени с последующим увеличением циркулирующих С3 и С5 ацилкарнитинов. Следствием этого является образование промежуточных соединений пропионил-КоА и сукцинил-КоА. Эти субстраты «засоряют» цикл трикарбоновых кислот аналогично влиянию избыточных жиров, приводя к снижению эффективности окисления жирных кислот и глюкозы, накоплению не полностью окисленных субстратов, митохондриальному стрессу, нарушению функции клеток и действия инсулина и, в конечном итоге, нарушению гомеостаза глюкозы, развитию ожирения и диабета. 

В настоящее время известно, что инсулиновая реакция, вызванная аминокислотами, параллельно запускает секрецию глюкагона для предотвращения возможной гипогликемии, которую может вызвать высокий инсулин, если вместе с белками не поступают углеводы. Именно ГИП ответственен за высвобождение глюкагона в ответ на прием белковой пищи. Он подавляет секрецию глюкагона при гипергликемии, но повышает секрецию глюкагона во время гипогликемии или эугликемии, поэтому важно учитывать концентрацию глюкозы. Было показано, что секреция глюкагона стимулируется ГИП исключительно при концентрации глюкозы ниже 5,5 ммоль/л, а при концентрации глюкозы более 5,5 ммоль/л он стимулирует выплеск инсулина. Из вышесказанного можно логически предположить, что если белковая пища повышает одновременно инсулин и глюкагон, то глюкагон, являясь полным конкурентным антагонистом инсулина, должен нивелировать его эффекты, т.е. гликогенез, липогенез и синтез белка, и, напротив, стимулировать гликогенолиз и липолиз. Идея, что глюкагон способствует липолизу, основана на том, что в жировых клетках есть рецепторы к глюкагону, и в исследованиях «in vitro» было показано, что глюкагон усиливает липолиз в жировых клетках человека. Однако, результаты на людях «in vivo» в естественных условиях показывают противоположный результат. Использование технологии тканевого микродиализа жировой ткани абдоминальной области во время эуглюкагонемии, гиперглюкагонемии и эугликемии с одновременной инфузией глюкозы показало, что внутритканевая концентрация глицерола не меняется во всех трех условиях (р = 0.98). Глицерол и свободные жирные кислоты плазмы крови также не отличались. Был сделан вывод, что гиперглюкагонемия, как таковая, не увеличивает интерстициальный глицерол (и, таким образом, липолиз) в подкожной жировой ткани.

В другом исследовании при интерпретации полученных данных после локальной перфузии глюкагона и ГПП-1 как в ткани скелетных мышц (икроножной мышцы), так и в подкожно-жировую ткань в брюшной области и последующем измерении содержания глицерола в диализате не было обнаружено каких-либо значимых изменений в скорости липолиза в мышечной или жировой ткани. А вот изопропилнорадреналин - химическое вещество, относящееся к группе катехоламинов, - перфузированный после глюкагона и ГПП-1, значительно увеличил скорость липолиза (увеличение глицерола на 249% и 72% в диализате из жировой ткани и скелетных мышцах соответственно). Исследователи заключили, что ни глюкагон, ни ГПП-1 не влияют на скорость липолиза в подкожно-жировой ткани и скелетных мышцах человека. Из этого следует, что в отличие от инсулина - главного липогенного гормона - глюкагон не является основным липолитическим гормоном. Но еще более важен тот факт, что на преобладание липогенеза или липолиза влияет не абсолютная концентрация гормонов, а их соотношение. При постоянном соотношении инсулин/глюкагон не меняется скорость глюконеогенеза, кетогенеза, гликогенолиза, липолиза и продукции лактата. Если это отношение увеличивается, то инсулин блокирует действие глюкагона. Он дозозависимо тормозит глюкагон-индуцированную продукцию вторичного мессенджера цАМФ в гепатоцитах, подавляет выход глюкагона, активируя активность К-каналов α-клеток и вызывая в результате гиперполяризацию мембран с прекращением электрической активности. Эксперименты показали, что из 20 аминокислот 17 глюкогенных сопоставимо стимулируют секрецию обоих гормонов, а аминокислоты с разветвленной цепью - валин, лейцин и изолейцин - повышают инсулин при подавлении секреции глюкагона. Смешанные растворы АК, содержащие примерно равные концентрации заменимых и незаменимых кислот, увеличивают примерно в два раза плазменные концентрации как инсулина, так и глюкагона. А, к примеру, соевый белок и казеин индуцируют различные соотношения инсулин/глюкагон. Соевый белок имеет повышенное содержание заменимых аминокислот, таких как аргинин и глицин, и вызывает низкий постпрандиальный коэффициент инсулин/глюкагон, а казеин – высокий. Аргинин и глицин связаны с уменьшением, а аминокислоты с разветвленной цепью - с повышением уровня холестерина в сыворотке крови. Белки растительного происхождения, обладая преимуществом в пользу продукции глюкагона, характеризуются сниженным уровнем липидов в сыворотке крови, ИФР-1 и способствуют снижению веса. Увеличение же в рационе животных молочных белков, богатых разветвленными аминокислотами, смещает равновесие в сторону инсулина и приводит к увеличению веса. 

Дополнительным подтверждением преобладающего влияния инсулина является быстрое снижение содержания неэстерифицированных жирных кислот НЭЖК в крови, наступающее после приема сывороточного белка или аминокислот ВСАА и умеренное понижение уровня глюкозы в крови в рандомизированных исследованиях.

Хотя эпидемиологические данные свидетельствуют о том, что люди, имеющие избыточную массу тела и потребляющие большое количество молочных продуктов, имеют сниженный риск развития инсулинорезистентности и что соблюдение рациона с высоким содержанием молочных продуктов приводит к снижению жировой массы тела, интервенционные исследования не находят последовательных результатов. Так, в систематическом обзоре из девяти рандомизированных исследований семь не нашли никаких существенных различий в массе тела между группами с высоким и низким потреблением молочных продуктов, а два исследования наблюдали значительно большее увеличение веса у пожилых людей в группе с высоким потреблением молочной продукции. В проспективном 12-летнем исследовании найдена положительная связь между потреблением молочных продуктов и увеличением веса. Имеются данные, что более высокое потребления молочных продуктов значительно связано с увеличением индекса массы тела (ИМТ), веса, окружности талии и снижением липопротеинов высокой плотности.

KLBywtCC_KE.jpg


Все имеющиеся результаты работ, констатирующих обратную ассоциацию высокого потребления молочного белка со снижением массы тела, показаны только для лиц с избыточным весом, ожирением и метаболическим синдромом, т.е. зависят от исходной массы тела. Причина же снижения веса кроется в том, что молочный белок увеличивает чувство насыщения и уменьшает потребление пищи. По данным экспериментов, увеличение сытости наблюдается после приема пищи с содержанием белка в диапазоне от 10% до 81%, что совпадает с высокими концентрациями лейцина, лизина, триптофана, изолейцина, треонина. Инсулиновая реакция ассоциируется со снижением аппетита и сывороточный протеин, наиболее активно воздействующий на инсулин, вызывает наибольшее снижение аппетита по сравнению с тунцом (р < 0.033), индейкой (р < 0,001) и яичным альбумином (р < 0,001). Сигналы сытости опосредуются также через пептиды кишечника, включающие холецистокинин и ГПП-1, оказывающие широкий спектр метаболических эффектов. Незаменимые аминокислоты, образующиеся в процессе гидролиза белков, максимально эффективно стимулируют высвобождение данных пептидов, которые вызывают насыщение и задерживают опорожнение желудка. Предполагается, что регуляция процесса опорожнения желудка осуществляется путем связывания ГПП-1 с его рецепторами в головном мозге, что ведет к парасимпатической стимуляции ветвями блуждающего нерва и регуляции желудочной моторики. Немаловажно, что с инсулином из панкреатических бета-клеток в общий кровоток в ответ на стимуляцию питательными веществами секретируется гормон амилин, который также замедляет опорожнение желудка и снижает аппетит. Таким образом, снижение ожирения и инсулинорезистентности у людей можно объяснить снижением потребления пищи и скорости ее переваривания.

В большинстве случаев, высокие уровни инсулина являются первоочередным фактором и приводят к инсулинорезистентности и ожирению.

Молочный белок, особо богатый аминокислотами ВСАА, может способствовать увеличению массы тела: во первых, за счет стимулирования значительно большей секреции инсулина, чем углеводы в отдельности, если потребляются незадолго до углеводной пищи, проявляя сахароснижающий эффект; во-вторых, BCAA и родственные метаболиты связаны с инсулинорезистентностью, ожирением, диабетом, являются предикторами развития сахарного диабета и однозначно реагируют на терапевтическое вмешательство; в-третьих, соотношение инсулин/глюкагон увеличивается после приема молочных белков, давая возможность инсулину проявить свое антилиполитическое действие.


Запись на курс


Вы даете согласие на обработку персональных данных.